Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

What can you say about the common difference of an AP where every term is prime?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

How many noughts are at the end of these giant numbers?

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you rearrange the cards to make a series of correct mathematical statements?

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

By proving these particular identities, prove the existence of general cases.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

An introduction to some beautiful results of Number Theory

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Explore a number pattern which has the same symmetries in different bases.

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.