Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Sort these mathematical propositions into a series of 8 correct statements.

Can you work through these direct proofs, using our interactive proof sorters?

Can you rearrange the cards to make a series of correct mathematical statements?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

If you think that mathematical proof is really clearcut and universal then you should read this article.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

When is it impossible to make number sandwiches?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

An introduction to some beautiful results of Number Theory

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?