Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.
Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.
Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.
The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .
This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?
Prove Pythagoras' Theorem using enlargements and scale factors.
Prove that the shaded area of the semicircle is equal to the area of the inner circle.
A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .
It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?
The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.
Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.
An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?
What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.
In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.
If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
Here are some examples of 'cons', and see if you can figure out where the trick is.
This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .
Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?
Can you find the areas of the trapezia in this sequence?
Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.
These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.
Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .
We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .
Can you make sense of these three proofs of Pythagoras' Theorem?
You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?
Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?
I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?
Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?
Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?
Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?
Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.
There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?
A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.
Can you make sense of the three methods to work out the area of the kite in the square?
From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .
I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?
Can you see how this picture illustrates the formula for the sum of the first six cube numbers?
This is the second article on right-angled triangles whose edge lengths are whole numbers.
The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .
ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.
Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.
Keep constructing triangles in the incircle of the previous triangle. What happens?
In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...
Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?
Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?
Three frogs started jumping randomly over any adjacent frog. Is it possible for them to finish up in the same order they started?
Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.
A huge wheel is rolling past your window. What do you see?