# Search by Topic

#### Resources tagged with Mathematical reasoning & proof similar to Mean Sequence:

Filter by: Content type:
Stage:
Challenge level:

### There are 176 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

### Sixational

##### Stage: 4 and 5 Challenge Level:

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

### Natural Sum

##### Stage: 4 Challenge Level:

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

##### Stage: 3 Challenge Level:

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

### Mod 3

##### Stage: 4 Challenge Level:

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

##### Stage: 3 Challenge Level:

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

### Happy Numbers

##### Stage: 3 Challenge Level:

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

### What Numbers Can We Make?

##### Stage: 3 Challenge Level:

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

### Three Frogs

##### Stage: 4 Challenge Level:

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

### AMGM

##### Stage: 4 Challenge Level:

Can you use the diagram to prove the AM-GM inequality?

### What Numbers Can We Make Now?

##### Stage: 3 Challenge Level:

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

### Even So

##### Stage: 3 Challenge Level:

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

### Picture Story

##### Stage: 4 Challenge Level:

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

### 1 Step 2 Step

##### Stage: 3 Challenge Level:

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

### One O Five

##### Stage: 3 Challenge Level:

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

### Cycle It

##### Stage: 3 Challenge Level:

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

### A Biggy

##### Stage: 4 Challenge Level:

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

### Unit Fractions

##### Stage: 3 Challenge Level:

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

### More Number Pyramids

##### Stage: 3 Challenge Level:

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

### Seven Squares - Group-worthy Task

##### Stage: 3 Challenge Level:

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

### Elevenses

##### Stage: 3 Challenge Level:

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

### The Triangle Game

##### Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

### Square Mean

##### Stage: 4 Challenge Level:

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

### Take Three from Five

##### Stage: 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

### Yih or Luk Tsut K'i or Three Men's Morris

##### Stage: 3, 4 and 5 Challenge Level:

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

### N000ughty Thoughts

##### Stage: 4 Challenge Level:

How many noughts are at the end of these giant numbers?

### Rotating Triangle

##### Stage: 3 and 4 Challenge Level:

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

### Problem Solving, Using and Applying and Functional Mathematics

##### Stage: 1, 2, 3, 4 and 5 Challenge Level:

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

### Greetings

##### Stage: 3 Challenge Level:

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

### More Marbles

##### Stage: 3 Challenge Level:

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

### Tri-colour

##### Stage: 3 Challenge Level:

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

### Whole Number Dynamics IV

##### Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

### Whole Number Dynamics III

##### Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

### A Knight's Journey

##### Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

### Whole Number Dynamics V

##### Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

##### Stage: 4 and 5 Challenge Level:

Which of these roads will satisfy a Munchkin builder?

### Converse

##### Stage: 4 Challenge Level:

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

### Pythagoras Proofs

##### Stage: 4 Challenge Level:

Can you make sense of these three proofs of Pythagoras' Theorem?

### Diophantine N-tuples

##### Stage: 4 Challenge Level:

Can you explain why a sequence of operations always gives you perfect squares?

### Impossible Sandwiches

##### Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

### Breaking the Equation ' Empirical Argument = Proof '

##### Stage: 2, 3, 4 and 5

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

### Picturing Pythagorean Triples

##### Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

### Magic Squares II

##### Stage: 4 and 5

An article which gives an account of some properties of magic squares.

### Whole Number Dynamics II

##### Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

### Pythagorean Triples II

##### Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

### Always Perfect

##### Stage: 4 Challenge Level:

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

### Sticky Numbers

##### Stage: 3 Challenge Level:

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

### Hockey

##### Stage: 3 Challenge Level:

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

### Pyramids

##### Stage: 3 Challenge Level:

What are the missing numbers in the pyramids?

### Long Short

##### Stage: 4 Challenge Level:

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

### Common Divisor

##### Stage: 4 Challenge Level:

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.