If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Four jewellers share their stock. Can you work out the relative values of their gems?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Kyle and his teacher disagree about his test score - who is right?

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Keep constructing triangles in the incircle of the previous triangle. What happens?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Can you explain why a sequence of operations always gives you perfect squares?

Can you make sense of these three proofs of Pythagoras' Theorem?

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Can you make sense of the three methods to work out the area of the kite in the square?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

How many noughts are at the end of these giant numbers?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

When is it impossible to make number sandwiches?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Prove Pythagoras' Theorem using enlargements and scale factors.

Can you rearrange the cards to make a series of correct mathematical statements?