If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This challenge combines addition, multiplication, perseverance and even proof.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Given the products of adjacent cells, can you complete this Sudoku?

56 406 is the product of two consecutive numbers. What are these two numbers?

What is the least square number which commences with six two's?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Number problems at primary level that may require resilience.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This task combines spatial awareness with addition and multiplication.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What is the remainder when 2^{164}is divided by 7?

Here is a chance to play a version of the classic Countdown Game.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Use the information to work out how many gifts there are in each pile.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Find the next number in this pattern: 3, 7, 19, 55 ...

This number has 903 digits. What is the sum of all 903 digits?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

How would you count the number of fingers in these pictures?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.