56 406 is the product of two consecutive numbers. What are these two numbers?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This task combines spatial awareness with addition and multiplication.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Are these statements always true, sometimes true or never true?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Number problems at primary level that may require determination.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This challenge combines addition, multiplication, perseverance and even proof.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Use the information to work out how many gifts there are in each pile.

How would you count the number of fingers in these pictures?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.