There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Number problems at primary level that may require resilience.

Number problems at primary level that require careful consideration.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you find different ways of creating paths using these paving slabs?

Given the products of adjacent cells, can you complete this Sudoku?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This task combines spatial awareness with addition and multiplication.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use the information to work out how many gifts there are in each pile.

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Find the next number in this pattern: 3, 7, 19, 55 ...

How would you count the number of fingers in these pictures?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?