There are **41** NRICH Mathematical resources connected to **Compound transformations**, you may find related items under Transformations and constructions.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Explore the effect of combining enlargements.

Explore the effect of reflecting in two intersecting mirror lines.

Explore the effect of reflecting in two parallel mirror lines.

Why not challenge a friend to play this transformation game?

Proofs that there are only seven frieze patterns involve complicated group theory. The symmetries of a cylinder provide an easier approach.

This task develops knowledge of transformation of graphs. By framing and asking questions a member of the team has to find out which mathematical function they have chosen.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

An introduction to groups using transformations, following on from the October 2006 Stage 3 problems.

How many different transformations can you find made up from combinations of R, S and their inverses? Can you be sure that you have found them all?

Does changing the order of transformations always/sometimes/never produce the same transformation?

See the effects of some combined transformations on a shape. Can you describe what the individual transformations do?

Jenny Murray describes the mathematical processes behind making patchwork in this article for students.

Scientist Bryan Rickett has a vision of the future - and it is one in which self-parking cars prowl the tarmac plains, hunting down suitable parking spots and manoeuvring elegantly into them.

Have you ever noticed how mathematical ideas are often used in patterns that we see all around us? This article describes the life of Escher who was a passionate believer that maths and art can be. . . .

This article looks at the importance in mathematics of representing places and spaces mathematics. Many famous mathematicians have spent time working on problems that involve moving and mapping. . . .

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Sort the frieze patterns into seven pairs according to the way in which the motif is repeated.

What happens to these capital letters when they are rotated through one half turn, or flipped sideways and from top to bottom?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Follow hints to investigate the matrix which gives a reflection of the plane in the line y=tanx. Show that the combination of two reflections in intersecting lines is a rotation.

Follow hints using a little coordinate geometry, plane geometry and trig to see how matrices are used to work on transformations of the plane.

These grids are filled according to some rules - can you complete them?

This problem is based on the idea of building patterns using transformations.

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

A gallery of beautiful photos of cast ironwork friezes in Australia with a mathematical discussion of the classification of frieze patterns.

How many differently shaped rectangles can you build using these equilateral and isosceles triangles? Can you make a square?

Can you cut up a square in the way shown and make the pieces into a triangle?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

Draw all the possible distinct triangles on a 4 x 4 dotty grid. Convince me that you have all possible triangles.

Triangles are formed by joining the vertices of a skeletal cube. How many different types of triangle are there? How many triangles altogether?

Can you find a way to turn a rectangle into a square?

A cylindrical helix is just a spiral on a cylinder, like an ordinary spring or the thread on a bolt. If I turn a left-handed helix over (top to bottom) does it become a right handed helix?

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

In this 'mesh' of sine graphs, one of the graphs is the graph of the sine function. Find the equations of the other graphs to reproduce the pattern.

Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?