Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Imagine you are suspending a cube from one vertex and allowing it to hang freely. What shape does the surface of the water make around the cube?

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

To avoid losing think of another very well known game where the patterns of play are similar.

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

Given a 2 by 2 by 2 skeletal cube with one route `down' the cube. How many routes are there from A to B?

A huge wheel is rolling past your window. What do you see?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

The farmers want to redraw their field boundary but keep the area the same. Can you advise them?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you mark 4 points on a flat surface so that there are only two different distances between them?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Can you make a tetrahedron whose faces all have the same perimeter?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

If you move the tiles around, can you make squares with different coloured edges?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Explore the area of families of parallelograms and triangles. Can you find rules to work out the areas?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

What is the minimum number of squares a 13 by 13 square can be dissected into?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?