Look at the calculus behind the simple act of a car going over a step.

Work in groups to try to create the best approximations to these physical quantities.

A look at different crystal lattice structures, and how they relate to structural properties

An introduction to a useful tool to check the validity of an equation.

See how the motion of the simple pendulum is not-so-simple after all.

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

This is the area of the advanced stemNRICH site devoted to the core applied mathematics underlying the sciences.

Dip your toe into the world of quantum mechanics by looking at the Schrodinger equation for hydrogen atoms

Things are roughened up and friction is now added to the approximate simple pendulum

Explore the power of aeroplanes, spaceships and horses.

Which line graph, equations and physical processes go together?

How does the half-life of a drug affect the build up of medication in the body over time?

How high will a ball taking a million seconds to fall travel?

Show that even a very powerful spaceship would eventually run out of overtaking power

Can you work out the natural time scale for the universe?

How fast would you have to throw a ball upwards so that it would never land?

Follow in the steps of Newton and find the path that the earth follows around the sun.

Where will the spaceman go when he falls through these strange planetary systems?

Explore the Lorentz force law for charges moving in different ways.

Explore the energy of this incredibly energetic particle which struck Earth on October 15th 1991

Look at the units in the expression for the energy levels of the electrons in a hydrogen atom according to the Bohr model.

A look at a fluid mechanics technique called the Steady Flow Momentum Equation.

Have you got the Mach knack? Discover the mathematics behind exceeding the sound barrier.

Problems which make you think about the kinetic ideas underlying the ideal gas laws.

When you change the units, do the numbers get bigger or smaller?

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Can you match up the entries from this table of units?

Ever wondered what it would be like to vaporise a diamond? Find out inside...

Some explanations of basic terms and some phenomena discovered by ancient astronomers

Derive an equation which describes satellite dynamics.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Explore the rates of growth of the sorts of simple polynomials often used in mathematical modelling.

Which units would you choose best to fit these situations?

A think about the physics of a motorbike riding upside down

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

A look at the fluid mechanics questions that are raised by the Stonehenge 'bluestones'.

Investigate the effects of the half-lifes of the isotopes of cobalt on the mass of a mystery lump of the element.

Investigate some of the issues raised by Geiger and Marsden's famous scattering experiment in which they fired alpha particles at a sheet of gold.

Investigate why the Lennard-Jones potential gives a good approximate explanation for the behaviour of atoms at close ranges

What is an AC voltage? How much power does an AC power source supply?

Explore how can changing the axes for a plot of an equation can lead to different shaped graphs emerging

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

A ball whooshes down a slide and hits another ball which flies off the slide horizontally as a projectile. How far does it go?