Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Can you find a rule which connects consecutive triangular numbers?

To avoid losing think of another very well known game where the patterns of play are similar.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you find a rule which relates triangular numbers to square numbers?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

What's the largest volume of box you can make from a square of paper?

Can you describe this route to infinity? Where will the arrows take you next?

A huge wheel is rolling past your window. What do you see?

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube so that the surface area of the remaining solid is the same as the surface area of the original?

Can you make a tetrahedron whose faces all have the same perimeter?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

Show that all pentagonal numbers are one third of a triangular number.

Can you find a way of representing these arrangements of balls?

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

What is the shape of wrapping paper that you would need to completely wrap this model?

A 3x3x3 cube may be reduced to unit cubes in six saw cuts. If after every cut you can rearrange the pieces before cutting straight through, can you do it in fewer?

Imagine you are suspending a cube from one vertex and allowing it to hang freely. What shape does the surface of the water make around the cube?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

In the game of Noughts and Crosses there are 8 distinct winning lines. How many distinct winning lines are there in a game played on a 3 by 3 by 3 board, with 27 cells?

Triangles are formed by joining the vertices of a skeletal cube. How many different types of triangle are there? How many triangles altogether?

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

A cylindrical helix is just a spiral on a cylinder, like an ordinary spring or the thread on a bolt. If I turn a left-handed helix over (top to bottom) does it become a right handed helix?

A useful visualising exercise which offers opportunities for discussion and generalising, and which could be used for thinking about the formulae needed for generating the results on a spreadsheet.

How can visual patterns be used to prove sums of series?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

What is the minimum number of squares a 13 by 13 square can be dissected into?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

When dice land edge-up, we usually roll again. But what if we didn't...?

Find all the ways to cut out a 'net' of six squares that can be folded into a cube.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.