Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

Can you make a tetrahedron whose faces all have the same perimeter?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

A 3x3x3 cube may be reduced to unit cubes in six saw cuts. If after every cut you can rearrange the pieces before cutting straight through, can you do it in fewer?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

A huge wheel is rolling past your window. What do you see?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

To avoid losing think of another very well known game where the patterns of play are similar.

Imagine you are suspending a cube from one vertex and allowing it to hang freely. What shape does the surface of the water make around the cube?

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you mark 4 points on a flat surface so that there are only two different distances between them?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

What is the minimum number of squares a 13 by 13 square can be dissected into?

In the game of Noughts and Crosses there are 8 distinct winning lines. How many distinct winning lines are there in a game played on a 3 by 3 by 3 board, with 27 cells?

Find all the ways to cut out a 'net' of six squares that can be folded into a cube.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

When dice land edge-up, we usually roll again. But what if we didn't...?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

In how many different ways can I colour the five edges of a pentagon red, blue and green so that no two adjacent edges are the same colour?