
Arclets

Three by one


Square coordinates
A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Opposite vertices
Can you recreate squares and rhombuses if you are only given a side or a diagonal?

Semi-regular tessellations
Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Circles in quadrilaterals
Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Triangle midpoints
You are only given the three midpoints of the sides of a triangle. How can you construct the original triangle?

Trapezium four
The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

Right angles
Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Which solids can we make?
Interior angles can help us to work out which polygons will tessellate. Can we use similar ideas to predict which polygons combine to create semi-regular solids?

On the edge
If you move the tiles around, can you make squares with different coloured edges?

Perimeter possibilities
I'm thinking of a rectangle with an area of 24. What could its perimeter be?

Can they be equal?
Can you find rectangles where the value of the area is the same as the value of the perimeter?

Marbles in a box
How many winning lines can you make in a three-dimensional version of noughts and crosses?

Sending a parcel
What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Blue and white
Identical squares of side one unit contain some circles shaded blue. In which of the four examples is the shaded area greatest?

Cola can
An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Curvy areas
Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Triangles and petals
An equilateral triangle rotates around regular polygons and produces an outline like a flower. What are the perimeters of the different flowers?


Vector journeys
Charlie likes to go for walks around a square park, while Alison likes to cut across diagonally. Can you find relationships between the vectors they walk along?

Tilted squares
It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Hexy-metry
A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Where to land
Chris is enjoying a swim but needs to get back for lunch. How far along the bank should she land?