Reasoning, convincing and proving

  • Poly Fibs
    problem

    Poly fibs

    Age
    16 to 18
    Challenge level
    filled star filled star filled star
    A sequence of polynomials starts 0, 1 and each poly is given by combining the two polys in the sequence just before it. Investigate and prove results about the roots of the polys.
  • Fibonacci Factors
    problem

    Fibonacci factors

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?
  • Modular Fractions
    problem

    Modular fractions

    Age
    16 to 18
    Challenge level
    filled star filled star filled star
    We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.
  • Children at Large
    problem

    Children at large

    Age
    11 to 14
    Challenge level
    filled star filled star empty star
    There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?
  • Clocked
    problem

    Clocked

    Age
    11 to 14
    Challenge level
    filled star filled star empty star
    Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?
  • Composite Notions
    problem

    Composite notions

    Age
    14 to 16
    Challenge level
    filled star filled star filled star
    A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.
  • Convex Polygons
    problem

    Convex polygons

    Age
    11 to 14
    Challenge level
    filled star filled star filled star
    Show that among the interior angles of a convex polygon there cannot be more than three acute angles.
  • In Constantly Passing
    problem

    In constantly passing

    Age
    14 to 16
    Challenge level
    filled star empty star empty star
    A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same direction. Buses leave the depot at regular intervals; they travel along the dual carriageway and back to the depot at a constant speed. At what interval do the buses leave the depot?
  • Ordered Sums
    problem

    Ordered sums

    Age
    14 to 16
    Challenge level
    filled star filled star empty star
    Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate a(n) and b(n) for n<8. What do you notice about these sequences? (ii) Find a relation between a(p) and b(q). (iii) Prove your conjectures.
  • Pythagoras for a Tetrahedron
    problem

    Pythagoras for a tetrahedron

    Age
    16 to 18
    Challenge level
    filled star filled star filled star

    In a right-angled tetrahedron prove that the sum of the squares of the areas of the 3 faces in mutually perpendicular planes equals the square of the area of the sloping face. A generalisation of Pythagoras' Theorem.