Find 180 to the power 59 (mod 391) to crack the code. To find the
secret number with a calculator we work with small numbers like 59
and 391 but very big numbers are used in the real world for this.
An example of a simple Public Key code, called the Knapsack Code is
described in this article, alongside some information on its
origins. A knowledge of modular arithmetic is useful.
Peter Zimmerman from Mill Hill County High School in Barnet, London
gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is
divisible by 33 for every non negative integer n.