A number N is divisible by 10, 90, 98 and 882 but it is NOT
divisible by 50 or 270 or 686 or 1764. It is also known that N is a
factor of 9261000. What is N?
Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?
Does a graph of the triangular numbers cross a graph of the six
times table? If so, where? Will a graph of the square numbers cross
the times table too?
Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). The question asks you to explain the trick.