Creating and manipulating expressions and formulae

  • Reciprocals
    problem

    Reciprocals

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Prove that the product of the sum of n positive numbers with the sum of their reciprocals is not less than n^2.
  • Pair Squares
    problem

    Pair squares

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.
  • Diverging
    problem

    Diverging

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.
  • Plum Tree
    problem

    Plum tree

    Age
    14 to 18
    Challenge level
    filled star empty star empty star
    Label this plum tree graph to make it totally magic!
  • W Mates
    problem

    W mates

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Show there are exactly 12 magic labellings of the Magic W using the numbers 1 to 9. Prove that for every labelling with a magic total T there is a corresponding labelling with a magic total 30-T.
  • Quadratic Harmony
    problem

    Quadratic harmony

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.
  • Unit Interval
    problem

    Unit interval

    Age
    14 to 18
    Challenge level
    filled star empty star empty star
    Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?
  • Chocolate Maths
    problem

    Chocolate maths

    Age
    11 to 14
    Challenge level
    filled star empty star empty star
    Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it works?
  • eNRICHing experience
    problem

    eNRICHing experience

    Age
    14 to 16
    Challenge level
    filled star empty star empty star

    Find the five distinct digits N, R, I, C and H in the following nomogram

  • Why 8?
    problem

    Why 8?

    Age
    11 to 14
    Challenge level
    filled star empty star empty star
    Choose any four consecutive even numbers. Multiply the two middle numbers together. Multiply the first and last numbers. Now subtract your second answer from the first. Try it with your own numbers. Why is the answer always 8?