Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Try out this number trick. What happens with different starting numbers? What do you notice?

Find the sum of all three-digit numbers each of whose digits is odd.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you explain the strategy for winning this game with any target?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Got It game for an adult and child. How can you play so that you know you will always win?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

An investigation that gives you the opportunity to make and justify predictions.

Can you find the values at the vertices when you know the values on the edges?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?