Can you find a way of counting the spheres in these arrangements?

Delight your friends with this cunning trick! Can you explain how it works?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you explain the strategy for winning this game with any target?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Got It game for an adult and child. How can you play so that you know you will always win?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Watch this animation. What do you see? Can you explain why this happens?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

It starts quite simple but great opportunities for number discoveries and patterns!

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Can you describe this route to infinity? Where will the arrows take you next?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge asks you to imagine a snake coiling on itself.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.