Are these statements always true, sometimes true or never true?

Here are two kinds of spirals for you to explore. What do you notice?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

This challenge asks you to imagine a snake coiling on itself.

An investigation that gives you the opportunity to make and justify predictions.

Can you explain the strategy for winning this game with any target?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This activity involves rounding four-digit numbers to the nearest thousand.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Make some loops out of regular hexagons. What rules can you discover?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

What happens when you round these three-digit numbers to the nearest 100?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Got It game for an adult and child. How can you play so that you know you will always win?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Find the sum of all three-digit numbers each of whose digits is odd.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you work out how to win this game of Nim? Does it matter if you go first or second?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.