You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Use your knowledge of place value to try to win this game. How will you maximise your score?

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

In this article for primary teachers we consider in depth when we might reason which helps us understand what reasoning 'looks like'.

This article for primary teachers suggests ways in which we can help learners move from being novice reasoners to expert reasoners.

Are these statements always true, sometimes true or never true?

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Can you find different ways of creating paths using these paving slabs?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .