Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

When is it impossible to make number sandwiches?

In this article for primary teachers we consider in depth when we might reason which helps us understand what reasoning 'looks like'.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

This article for primary teachers suggests ways in which we can help learners move from being novice reasoners to expert reasoners.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Here are some examples of 'cons', and see if you can figure out where the trick is.

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

A huge wheel is rolling past your window. What do you see?

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.