Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

56 406 is the product of two consecutive numbers. What are these two numbers?

How will you work out which numbers have been used to create this multiplication square?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

This task offers an opportunity to explore all sorts of number relationships, but particularly multiplication.

Number problems at primary level that may require resilience.

Number problems at primary level that require careful consideration.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you find different ways of creating paths using these paving slabs?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

This task combines spatial awareness with addition and multiplication.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

How many starfish could there be on the beach, and how many children, if I can see 28 arms?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This number has 903 digits. What is the sum of all 903 digits?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Find the next number in this pattern: 3, 7, 19, 55 ...

Here is a chance to play a version of the classic Countdown Game.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?