This article for teachers suggests ideas for activities built around 10 and 2010.

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Ann thought of 5 numbers and told Bob all the sums that could be made by adding the numbers in pairs. The list of sums is 6, 7, 8, 8, 9, 9, 10,10, 11, 12. Help Bob to find out which numbers Ann was. . . .

If you wrote all the possible four digit numbers made by using each of the digits 2, 4, 5, 7 once, what would they add up to?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Find out about Magic Squares in this article written for students. Why are they magic?!

This article suggests some ways of making sense of calculations involving positive and negative numbers.

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

You have four jugs of 9, 7, 4 and 2 litres capacity. The 9 litre jug is full of wine, the others are empty. Can you divide the wine into three equal quantities?

Choose two digits and arrange them to make two double-digit numbers. Now add your double-digit numbers. Now add your single digit numbers. Divide your double-digit answer by your single-digit answer. . . .

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Here is a chance to play a version of the classic Countdown Game.

Here is a chance to play a fractions version of the classic Countdown Game.

There are nasty versions of this dice game but we'll start with the nice ones...

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Using the 8 dominoes make a square where each of the columns and rows adds up to 8

Try out some calculations. Are you surprised by the results?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

Delight your friends with this cunning trick! Can you explain how it works?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

This Sudoku requires you to do some working backwards before working forwards.

What is the sum of all the digits in all the integers from one to one million?

How can we help students make sense of addition and subtraction of negative numbers?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

There are exactly 3 ways to add 4 odd numbers to get 10. Find all the ways of adding 8 odd numbers to get 20. To be sure of getting all the solutions you will need to be systematic. What about. . . .

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

In this game the winner is the first to complete a row of three. Are some squares easier to land on than others?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.