You may also like

problem icon

Have You Got It?

Can you explain the strategy for winning this game with any target?

problem icon

Counting Factors

Is there an efficient way to work out how many factors a large number has?

problem icon

Repeaters

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Adding All Nine

Age 11 to 14 Challenge Level:

Make a set of numbers that use all the digits from $1$ to $9$, once and once only.

1, 2, 3, 4, 5, 6, 7, 8, 9.

For instance, we could choose:

$638, 92, 571$ and $4$

Add them up:

$638 + 92 + 571 + 4 = 1305$

$1305$ is divisible by $9$ (it is $145\times 9$)

(use a calculator to check this if you do not know yet how to divide by $9$)

Add each of the digits in the number $1305$ . What is their sum?

Or, perhaps we could choose:

$921, 4357$ and $68$

Add them up:

$921 + 4357 + 68 = 5346$

$5346$ is divisible by $9$ (it is $594 \times 9$)

Now try some other possibilities for yourself!

I wonder what happens if we use all $10$ digits from $0$ to $9$, once and once only?

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Try some for yourself!

What do you think would happen if we used the eight digits from $1$ to $8$?

Test your hypothesis by trying some possibilities for yourself!

Were you correct?

Is there a pattern beginning to emerge? Do you have theory that might explain what is happening?

Try some different sets of digits for yourself!