A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you find different ways of creating paths using these paving slabs?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Can you complete this jigsaw of the multiplication square?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Given the products of diagonally opposite cells - can you complete this Sudoku?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Number problems at primary level that may require resilience.

Number problems at primary level to work on with others.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Play this game and see if you can figure out the computer's chosen number.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Have a go at balancing this equation. Can you find different ways of doing it?

Got It game for an adult and child. How can you play so that you know you will always win?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

How many different rectangles can you make using this set of rods?

Can you work out some different ways to balance this equation?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

The clues for this Sudoku are the product of the numbers in adjacent squares.