Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you find a way of counting the spheres in these arrangements?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Watch this animation. What do you see? Can you explain why this happens?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find out what a "fault-free" rectangle is and try to make some of your own.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Got It game for an adult and child. How can you play so that you know you will always win?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Delight your friends with this cunning trick! Can you explain how it works?

Can you explain the strategy for winning this game with any target?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

This activity involves rounding four-digit numbers to the nearest thousand.

Explore the effect of combining enlargements.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

This challenge asks you to imagine a snake coiling on itself.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Here are two kinds of spirals for you to explore. What do you notice?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?