Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Can you find different ways of creating paths using these paving slabs?

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Are these statements always true, sometimes true or never true?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Choose any three by three square of dates on a calendar page...

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Here are some examples of 'cons', and see if you can figure out where the trick is.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Are these statements always true, sometimes true or never true?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .