Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Choose any three by three square of dates on a calendar page...

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Are these statements always true, sometimes true or never true?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Are these statements always true, sometimes true or never true?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

A introduction to how patterns can be deceiving, and what is and is not a proof.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

Which set of numbers that add to 10 have the largest product?

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .