A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Can you explain the strategy for winning this game with any target?

Given the products of adjacent cells, can you complete this Sudoku?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Got It game for an adult and child. How can you play so that you know you will always win?

If you have only four weights, where could you place them in order to balance this equaliser?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

56 406 is the product of two consecutive numbers. What are these two numbers?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

A game that tests your understanding of remainders.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you work out some different ways to balance this equation?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you complete this jigsaw of the multiplication square?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Use the interactivities to complete these Venn diagrams.

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Number problems at primary level that may require resilience.