Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

56 406 is the product of two consecutive numbers. What are these two numbers?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Are these statements always true, sometimes true or never true?

Can you explain the strategy for winning this game with any target?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Got It game for an adult and child. How can you play so that you know you will always win?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Have a go at balancing this equation. Can you find different ways of doing it?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Can you work out some different ways to balance this equation?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Number problems at primary level that may require resilience.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

An investigation that gives you the opportunity to make and justify predictions.

Can you find different ways of creating paths using these paving slabs?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Find the highest power of 11 that will divide into 1000! exactly.