problem
Tetrahedra tester
An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?
An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?
Can you work out the fraction of the original triangle that is covered by the inner triangle?
A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?
If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?