Write down a three-digit number Change the order of the digits to
get a different number Find the difference between the two three
digit numbers Follow the rest of the instructions then try to
explain why this works.
Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). The question asks you to explain the trick.
Using balancing scales what is the least number of weights needed
to weigh all integer masses from 1 to 1000? Placing some of the
weights in the same pan as the object how many are needed?
Choose any 3 digits and make a 6 digit number by repeating the 3
digits in the same order (e.g. 594594). Explain why whatever digits
you choose the number will always be divisible by 7, 11 and 13.
Consider all two digit numbers (10, 11, . . . ,99). In writing down
all these numbers, which digits occur least often, and which occur
most often ? What about three digit numbers, four digit numbers and
so on?
If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.