Peter Zimmerman from Mill Hill County High School in Barnet, London
gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is
divisible by 33 for every non negative integer n.
We are used to writing numbers in base ten, using 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Eg. 75 means 7 tens and five units. This article explains how numbers can be written in any number base.
This article for students and teachers tries to think about how
long would it take someone to create every possible shuffle of a
pack of cards, with surprising results.
a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number.
(b) Prove that 11^{10}-1 is divisible by 100.