problem
Similarly so
ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.
It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.
The points P, Q, R and S are the midpoints of the edges of a non-convex quadrilateral.What do you notice about the quadrilateral PQRS and its area?
Join the midpoints of a quadrilateral to get a new quadrilateral. What is special about it?
A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?