There are **20** NRICH Mathematical resources connected to **Vector Notation and Geometry**, you may find related items under Vectors and Matrices.

Charlie likes to go for walks around a square park, while Alison likes to cut across diagonally. Can you find relationships between the vectors they walk along?

Starting with two basic vector steps, which destinations can you reach on a vector walk?

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

Can you find the area of a parallelogram defined by two vectors?

An account of multiplication of vectors, both scalar products and vector products.

The article provides a summary of the elementary ideas about vectors usually met in school mathematics, describes what vectors are and how to add, subtract and multiply them by scalars and indicates. . . .

Show that the edges AD and BC of a tetrahedron ABCD are mutually perpendicular when: AB²+CD² = AC²+BD².

A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?

Use vectors to collect as many gems as you can and bring them safely home!

Can you combine vectors to get from one point to another?

Explore the meaning behind the algebra and geometry of matrices with these 10 individual problems.

Go on a vector walk and determine which points on the walk are closest to the origin.

Explore the lattice and vector structure of this crystal.

Can you arrange a set of charged particles so that none of them start to move when released from rest?

Find out how the quaternion function G(v) = qvq^-1 gives a simple algebraic method for working with rotations in 3-space.

Analyse these repeating patterns. Decide on the conditions for a periodic pattern to occur and when the pattern extends to infinity.

Can you work out the fraction of the original triangle that is covered by the inner triangle?

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.