You may also like

problem icon

An Introduction to Vectors

The article provides a summary of the elementary ideas about vectors usually met in school mathematics, describes what vectors are and how to add, subtract and multiply them by scalars and indicates why they are useful.

Vector Racer

Stage: 3 and 4 Challenge Level: Challenge Level:1

To play this game, you will need to print off a copy of the race track, and you will need someone to play with.


  

 

Rules:

Each player moves in turn, and uses vector notation to describe their moves around the race track.
Each player starts off from rest.
Each horizontal and vertical component cannot differ by more than two from the previous move.
For example, after a move of $\pmatrix{0\cr 2}$ the following moves are possible:
 

$\pmatrix{-2\cr 0}$ $\pmatrix{-1\cr 0}$ $\pmatrix{0\cr 0}$ $\pmatrix{1\cr 0}$ $\pmatrix{2\cr 0}$
$\pmatrix{-2\cr 1}$ $\pmatrix{-1\cr 1}$ $\pmatrix{0\cr 1}$ $\pmatrix{1\cr 1}$ $\pmatrix{2\cr 1}$
$\pmatrix{-2\cr 2}$ $\pmatrix{-1\cr 2}$ $\pmatrix{0\cr 2}$ $\pmatrix{1\cr 2}$ $\pmatrix{2\cr 2}$
$\pmatrix{-2\cr 3}$ $\pmatrix{-1\cr 3}$ $\pmatrix{0\cr 3}$ $\pmatrix{1\cr 3}$ $\pmatrix{2\cr 3}$
$\pmatrix{-2\cr 4}$ $\pmatrix{-1\cr 4}$ $\pmatrix{0\cr 4}$ $\pmatrix{1\cr 4}$ $\pmatrix{2\cr 4}$


Challenge a friend to a race.

Choose your starting positions and agree what the penalty will be for going off the track.

Who can get round in the fewest moves?
 

​Here is an alternative version you might like to try.
The challenge is to avoid the pits


Extension:

Who can get round in the shortest distance?