Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Use Excel to explore multiplication of fractions.

An Excel spreadsheet with an investigation.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Use Excel to investigate the effect of translations around a number grid.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an Excel spreadsheet to explore long multiplication.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you find a reliable strategy for choosing coordinates that will locate the treasure in the minimum number of guesses?

A group of interactive resources to support work on percentages Key Stage 4.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Can you explain the strategy for winning this game with any target?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

To avoid losing think of another very well known game where the patterns of play are similar.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Here is a chance to play a fractions version of the classic Countdown Game.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

How good are you at finding the formula for a number pattern ?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

A collection of resources to support work on Factors and Multiples at Secondary level.