in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you explain the strategy for winning this game with any target?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Here is a chance to play a version of the classic Countdown Game.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Can you beat the computer in the challenging strategy game?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Use Excel to explore multiplication of fractions.

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you find the pairs that represent the same amount of money?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

How good are you at finding the formula for a number pattern ?

Here is a chance to play a fractions version of the classic Countdown Game.

Can you find a reliable strategy for choosing coordinates that will locate the treasure in the minimum number of guesses?

A game in which players take it in turns to choose a number. Can you block your opponent?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

A collection of resources to support work on Factors and Multiples at Secondary level.

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

A group of interactive resources to support work on percentages Key Stage 4.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use an Excel spreadsheet to explore long multiplication.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

An environment which simulates working with Cuisenaire rods.

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.