Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This article for primary teachers encourages exploration of two fundamental ideas, exchange and 'unitising', which will help children become more fluent when calculating.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Investigate what happens when you add house numbers along a street in different ways.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

Can you substitute numbers for the letters in these sums?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

How many starfish could there be on the beach, and how many children, if I can see 28 arms?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

In this article for primary teachers, Ems outlines how we can encourage learners to be flexible in their approach to calculation, and why this is crucial.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

In this article for teachers, Elizabeth Carruthers and Maulfry Worthington explore the differences between 'recording mathematics' and 'representing mathematical thinking'.

Try out this number trick. What happens with different starting numbers? What do you notice?

This task follows on from Build it Up and takes the ideas into three dimensions!

In this article for primary teachers, Lynne McClure outlines what is meant by fluency in the context of number and explains how our selection of NRICH tasks can help.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Investigate the different distances of these car journeys and find out how long they take.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.