Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Is there an efficient way to work out how many factors a large number has?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Can you find what the last two digits of the number $4^{1999}$ are?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you find any perfect numbers? Read this article to find out more...

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Find the highest power of 11 that will divide into 1000! exactly.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

How many noughts are at the end of these giant numbers?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Given the products of adjacent cells, can you complete this Sudoku?

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Can you explain the strategy for winning this game with any target?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

A collection of resources to support work on Factors and Multiples at Secondary level.

Can you make lines of Cuisenaire rods that differ by 1?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?