A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What can you see? What do you notice? What questions can you ask?

Which of these dice are right-handed and which are left-handed?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Here are the six faces of a cube - in no particular order. Here are three views of the cube. Can you deduce where the faces are in relation to each other and record them on the net of this cube?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How many different triangles can you make on a circular pegboard that has nine pegs?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

How many different symmetrical shapes can you make by shading triangles or squares?

This article for teachers describes a project which explores the power of storytelling to convey concepts and ideas to children.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Can you fit the tangram pieces into the outlines of the convex shapes?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Can you find a way of counting the spheres in these arrangements?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?