Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outline of the house?

Can you fit the tangram pieces into the outline of this teacup?

Explore our selection of interactive tangrams. Can you use the tangram pieces to re-create each picture?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the telescope and microscope?

Can you fit the tangram pieces into the outline of the telephone?

Can you fit the tangram pieces into the outline of the candle?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you fit the tangram pieces into the outline of the butterfly?

Can you fit the tangram pieces into the outlines of the convex shapes?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outline of Mah Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the people?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of the sports car?

Can you fit the tangram pieces into the outlines of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of the brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Can you fit the tangram pieces into the outlines of the numbers?

Can you logically construct these silhouettes using the tangram pieces?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

What is the greatest number of squares you can make by overlapping three squares?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Have a look at these photos of different fruit. How many do you see? How did you count?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?