In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What is the best way to shunt these carriages so that each train can continue its journey?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the greatest number of squares you can make by overlapping three squares?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Exploring and predicting folding, cutting and punching holes and making spirals.

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Can you find ways of joining cubes together so that 28 faces are visible?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Make a cube out of straws and have a go at this practical challenge.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you cut up a square in the way shown and make the pieces into a triangle?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you visualise what shape this piece of paper will make when it is folded?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Make a flower design using the same shape made out of different sizes of paper.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you make a 3x3 cube with these shapes made from small cubes?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .