The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

To avoid losing think of another very well known game where the patterns of play are similar.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

A tool for generating random integers.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Discover a handy way to describe reorderings and solve our anagram in the process.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

How good are you at finding the formula for a number pattern ?

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

An environment that enables you to investigate tessellations of regular polygons

Can you explain the strategy for winning this game with any target?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Here is a chance to play a fractions version of the classic Countdown Game.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use Excel to explore multiplication of fractions.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A collection of our favourite pictorial problems, one for each day of Advent.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Match the cards of the same value.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Use an interactive Excel spreadsheet to investigate factors and multiples.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .