This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Square It game for an adult and child. Can you come up with a way of always winning this game?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Match pairs of cards so that they have equivalent ratios.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Can you beat the computer in the challenging strategy game?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

The classic vector racing game brought to a screen near you.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Discover a handy way to describe reorderings and solve our anagram in the process.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Use Excel to explore multiplication of fractions.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

An environment that enables you to investigate tessellations of regular polygons

Practise your skills of proportional reasoning with this interactive haemocytometer.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

An Excel spreadsheet with an investigation.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Use Excel to practise adding and subtracting fractions.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Use an interactive Excel spreadsheet to investigate factors and multiples.

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.

This resource contains interactive problems to support work on number sequences at Key Stage 4.