Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

An environment that enables you to investigate tessellations of regular polygons

Use Excel to explore multiplication of fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Match pairs of cards so that they have equivalent ratios.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Can you find a way to turn a rectangle into a square?

A group of interactive resources to support work on percentages Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an Excel spreadsheet to explore long multiplication.

A collection of resources to support work on Factors and Multiples at Secondary level.

An Excel spreadsheet with an investigation.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Here is a chance to play a fractions version of the classic Countdown Game.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Use Excel to practise adding and subtracting fractions.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you find triangles on a 9-point circle? Can you work out their angles?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Can you beat the computer in the challenging strategy game?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Practise your skills of proportional reasoning with this interactive haemocytometer.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

To avoid losing think of another very well known game where the patterns of play are similar.

The computer has made a rectangle and will tell you the number of spots it uses in total. Can you find out where the rectangle is?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Prove Pythagoras' Theorem using enlargements and scale factors.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!