Different combinations of the weights available allow you to make different totals. Which totals can you make?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you explain the strategy for winning this game with any target?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

There are nasty versions of this dice game but we'll start with the nice ones...

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Here is a chance to play a version of the classic Countdown Game.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

This challenge extends the Plants investigation so now four or more children are involved.

Delight your friends with this cunning trick! Can you explain how it works?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

This task follows on from Build it Up and takes the ideas into three dimensions!

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Choose any three by three square of dates on a calendar page...

The picture shows a lighthouse and many underwater creatures. If you know the markings on the lighthouse are 1m apart, can you work out the distances between some of the different creatures?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.