For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

You have 5 darts and your target score is 44. How many different ways could you score 44?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Here is a chance to play a version of the classic Countdown Game.

Got It game for an adult and child. How can you play so that you know you will always win?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task follows on from Build it Up and takes the ideas into three dimensions!

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

An environment which simulates working with Cuisenaire rods.

This dice train has been made using specific rules. How many different trains can you make?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.